A review of the geographical distribution and habitat of the Atlantic humpback dolphin (Sousa teuszii)


Weir, Caroline R. and Collins, Tim



Book Title

Advances in Marine Biology Volume 72








Africa, Atlantic Ocean, Coastal, Ecology, Group size, Marine ecoregion, Nearshore, Sea-surface temperature, Water depth, sousa, sousa teuszii, humpback dolphins, West Africa, Gabon, congo, Conservation status


Understanding of the distributional ecology of the Atlantic humpback dolphin (Sousa teuszii) has been hampered by a lack of systematic and consistent sampling effort. The only comprehensive species distribution review was published in 2004; since then a considerable amount of novel information has emerged. We compiled 853 sighting, capture and specimen records of the species, and produced global and regional distribution maps. Of the 830 records where year was available, 63.1% dated from ≥ 2005 and confirm a contemporary occurrence in six marine ecoregions and 11 countries: Western Sahara, Mauritania, Senegal, Gambia, Guinea-Bissau, Guinea, Benin, Cameroon, Gabon, Congo Republic and Angola. Additionally, Togo is a recently confirmed range state. Group sizes ranged from 1 to 45 animals, with small groups of 1 to 10 animals comprising 65% of the sightings. Similarities were noted in the regions inhabited by Atlantic humpback dolphins across their range, particularly an occurrence in relatively shallow (predominantly ≤ 20 m) depths, in warm waters (average SSTs of 15.8–31.8°C) and in dynamic habitat strongly influenced by tidal patterns. These conditions occur in various habitats occupied by the species, including estuarine systems, open coasts, archipelagos, tidal mud-flats and sheltered bays. Sightings were recorded at distances of 13 m to 12.8 km (mean of 573 m) from land, indicating that the species occurs several kilometres from shore when suitable shallow habitat is present. The Atlantic humpback dolphin may be a ‘nearshore’ species based on oceanographic definitions incorporating water depth, wave action and sedimentation rather than on spatial distance from the coast.